3.4.28 \(\int \frac {x^{17/2}}{(b x^2+c x^4)^2} \, dx\) [328]

3.4.28.1 Optimal result
3.4.28.2 Mathematica [A] (verified)
3.4.28.3 Rubi [A] (verified)
3.4.28.4 Maple [A] (verified)
3.4.28.5 Fricas [C] (verification not implemented)
3.4.28.6 Sympy [F(-1)]
3.4.28.7 Maxima [A] (verification not implemented)
3.4.28.8 Giac [A] (verification not implemented)
3.4.28.9 Mupad [B] (verification not implemented)

3.4.28.1 Optimal result

Integrand size = 19, antiderivative size = 230 \[ \int \frac {x^{17/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {7 x^{3/2}}{6 c^2}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}+\frac {7 b^{3/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} c^{11/4}}-\frac {7 b^{3/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} c^{11/4}}-\frac {7 b^{3/4} \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} c^{11/4}}+\frac {7 b^{3/4} \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} c^{11/4}} \]

output
7/6*x^(3/2)/c^2-1/2*x^(7/2)/c/(c*x^2+b)+7/8*b^(3/4)*arctan(1-c^(1/4)*2^(1/ 
2)*x^(1/2)/b^(1/4))/c^(11/4)*2^(1/2)-7/8*b^(3/4)*arctan(1+c^(1/4)*2^(1/2)* 
x^(1/2)/b^(1/4))/c^(11/4)*2^(1/2)-7/16*b^(3/4)*ln(b^(1/2)+x*c^(1/2)-b^(1/4 
)*c^(1/4)*2^(1/2)*x^(1/2))/c^(11/4)*2^(1/2)+7/16*b^(3/4)*ln(b^(1/2)+x*c^(1 
/2)+b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/c^(11/4)*2^(1/2)
 
3.4.28.2 Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.60 \[ \int \frac {x^{17/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {\frac {4 c^{3/4} x^{3/2} \left (7 b+4 c x^2\right )}{b+c x^2}+21 \sqrt {2} b^{3/4} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )+21 \sqrt {2} b^{3/4} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{24 c^{11/4}} \]

input
Integrate[x^(17/2)/(b*x^2 + c*x^4)^2,x]
 
output
((4*c^(3/4)*x^(3/2)*(7*b + 4*c*x^2))/(b + c*x^2) + 21*Sqrt[2]*b^(3/4)*ArcT 
an[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])] + 21*Sqrt[2]*b 
^(3/4)*ArcTanh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/( 
24*c^(11/4))
 
3.4.28.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.13, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.632, Rules used = {9, 252, 262, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{17/2}}{\left (b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {x^{9/2}}{\left (b+c x^2\right )^2}dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {7 \int \frac {x^{5/2}}{c x^2+b}dx}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {b \int \frac {\sqrt {x}}{c x^2+b}dx}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \int \frac {x}{c x^2+b}d\sqrt {x}}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {c}}\right )}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {7 \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{c}\right )}{4 c}-\frac {x^{7/2}}{2 c \left (b+c x^2\right )}\)

input
Int[x^(17/2)/(b*x^2 + c*x^4)^2,x]
 
output
-1/2*x^(7/2)/(c*(b + c*x^2)) + (7*((2*x^(3/2))/(3*c) - (2*b*((-(ArcTan[1 - 
 (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4))) + ArcTan[1 
+ (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c] 
) - (-1/2*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqrt 
[2]*b^(1/4)*c^(1/4)) + Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqr 
t[c]*x]/(2*Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c])))/c))/(4*c)
 

3.4.28.3.1 Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.4.28.4 Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.59

method result size
derivativedivides \(\frac {2 x^{\frac {3}{2}}}{3 c^{2}}-\frac {2 b \left (-\frac {x^{\frac {3}{2}}}{4 \left (c \,x^{2}+b \right )}+\frac {7 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{c^{2}}\) \(136\)
default \(\frac {2 x^{\frac {3}{2}}}{3 c^{2}}-\frac {2 b \left (-\frac {x^{\frac {3}{2}}}{4 \left (c \,x^{2}+b \right )}+\frac {7 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{c^{2}}\) \(136\)
risch \(\frac {2 x^{\frac {3}{2}}}{3 c^{2}}-\frac {b \left (-\frac {x^{\frac {3}{2}}}{2 \left (c \,x^{2}+b \right )}+\frac {7 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{c^{2}}\) \(136\)

input
int(x^(17/2)/(c*x^4+b*x^2)^2,x,method=_RETURNVERBOSE)
 
output
2/3*x^(3/2)/c^2-2*b/c^2*(-1/4*x^(3/2)/(c*x^2+b)+7/32/c/(b/c)^(1/4)*2^(1/2) 
*(ln((x-(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2))/(x+(b/c)^(1/4)*x^(1/2)*2^ 
(1/2)+(b/c)^(1/2)))+2*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/ 
2)/(b/c)^(1/4)*x^(1/2)-1)))
 
3.4.28.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 238, normalized size of antiderivative = 1.03 \[ \int \frac {x^{17/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {21 \, {\left (c^{3} x^{2} + b c^{2}\right )} \left (-\frac {b^{3}}{c^{11}}\right )^{\frac {1}{4}} \log \left (343 \, c^{8} \left (-\frac {b^{3}}{c^{11}}\right )^{\frac {3}{4}} + 343 \, b^{2} \sqrt {x}\right ) + 21 \, {\left (-i \, c^{3} x^{2} - i \, b c^{2}\right )} \left (-\frac {b^{3}}{c^{11}}\right )^{\frac {1}{4}} \log \left (343 i \, c^{8} \left (-\frac {b^{3}}{c^{11}}\right )^{\frac {3}{4}} + 343 \, b^{2} \sqrt {x}\right ) + 21 \, {\left (i \, c^{3} x^{2} + i \, b c^{2}\right )} \left (-\frac {b^{3}}{c^{11}}\right )^{\frac {1}{4}} \log \left (-343 i \, c^{8} \left (-\frac {b^{3}}{c^{11}}\right )^{\frac {3}{4}} + 343 \, b^{2} \sqrt {x}\right ) - 21 \, {\left (c^{3} x^{2} + b c^{2}\right )} \left (-\frac {b^{3}}{c^{11}}\right )^{\frac {1}{4}} \log \left (-343 \, c^{8} \left (-\frac {b^{3}}{c^{11}}\right )^{\frac {3}{4}} + 343 \, b^{2} \sqrt {x}\right ) - 4 \, {\left (4 \, c x^{3} + 7 \, b x\right )} \sqrt {x}}{24 \, {\left (c^{3} x^{2} + b c^{2}\right )}} \]

input
integrate(x^(17/2)/(c*x^4+b*x^2)^2,x, algorithm="fricas")
 
output
-1/24*(21*(c^3*x^2 + b*c^2)*(-b^3/c^11)^(1/4)*log(343*c^8*(-b^3/c^11)^(3/4 
) + 343*b^2*sqrt(x)) + 21*(-I*c^3*x^2 - I*b*c^2)*(-b^3/c^11)^(1/4)*log(343 
*I*c^8*(-b^3/c^11)^(3/4) + 343*b^2*sqrt(x)) + 21*(I*c^3*x^2 + I*b*c^2)*(-b 
^3/c^11)^(1/4)*log(-343*I*c^8*(-b^3/c^11)^(3/4) + 343*b^2*sqrt(x)) - 21*(c 
^3*x^2 + b*c^2)*(-b^3/c^11)^(1/4)*log(-343*c^8*(-b^3/c^11)^(3/4) + 343*b^2 
*sqrt(x)) - 4*(4*c*x^3 + 7*b*x)*sqrt(x))/(c^3*x^2 + b*c^2)
 
3.4.28.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{17/2}}{\left (b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**(17/2)/(c*x**4+b*x**2)**2,x)
 
output
Timed out
 
3.4.28.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.90 \[ \int \frac {x^{17/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {b x^{\frac {3}{2}}}{2 \, {\left (c^{3} x^{2} + b c^{2}\right )}} - \frac {7 \, b {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}}\right )}}{16 \, c^{2}} + \frac {2 \, x^{\frac {3}{2}}}{3 \, c^{2}} \]

input
integrate(x^(17/2)/(c*x^4+b*x^2)^2,x, algorithm="maxima")
 
output
1/2*b*x^(3/2)/(c^3*x^2 + b*c^2) - 7/16*b*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sq 
rt(2)*b^(1/4)*c^(1/4) + 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sq 
rt(b)*sqrt(c))*sqrt(c)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c 
^(1/4) - 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))* 
sqrt(c)) - sqrt(2)*log(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt( 
b))/(b^(1/4)*c^(3/4)) + sqrt(2)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqr 
t(c)*x + sqrt(b))/(b^(1/4)*c^(3/4)))/c^2 + 2/3*x^(3/2)/c^2
 
3.4.28.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.85 \[ \int \frac {x^{17/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {b x^{\frac {3}{2}}}{2 \, {\left (c x^{2} + b\right )} c^{2}} + \frac {2 \, x^{\frac {3}{2}}}{3 \, c^{2}} - \frac {7 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, c^{5}} - \frac {7 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, c^{5}} + \frac {7 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, c^{5}} - \frac {7 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, c^{5}} \]

input
integrate(x^(17/2)/(c*x^4+b*x^2)^2,x, algorithm="giac")
 
output
1/2*b*x^(3/2)/((c*x^2 + b)*c^2) + 2/3*x^(3/2)/c^2 - 7/8*sqrt(2)*(b*c^3)^(3 
/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/c^5 
- 7/8*sqrt(2)*(b*c^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*s 
qrt(x))/(b/c)^(1/4))/c^5 + 7/16*sqrt(2)*(b*c^3)^(3/4)*log(sqrt(2)*sqrt(x)* 
(b/c)^(1/4) + x + sqrt(b/c))/c^5 - 7/16*sqrt(2)*(b*c^3)^(3/4)*log(-sqrt(2) 
*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/c^5
 
3.4.28.9 Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.35 \[ \int \frac {x^{17/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {2\,x^{3/2}}{3\,c^2}+\frac {7\,{\left (-b\right )}^{3/4}\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,c^{11/4}}+\frac {b\,x^{3/2}}{2\,\left (c^3\,x^2+b\,c^2\right )}+\frac {{\left (-b\right )}^{3/4}\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}\,1{}\mathrm {i}}{{\left (-b\right )}^{1/4}}\right )\,7{}\mathrm {i}}{4\,c^{11/4}} \]

input
int(x^(17/2)/(b*x^2 + c*x^4)^2,x)
 
output
(2*x^(3/2))/(3*c^2) + (7*(-b)^(3/4)*atan((c^(1/4)*x^(1/2))/(-b)^(1/4)))/(4 
*c^(11/4)) + ((-b)^(3/4)*atan((c^(1/4)*x^(1/2)*1i)/(-b)^(1/4))*7i)/(4*c^(1 
1/4)) + (b*x^(3/2))/(2*(b*c^2 + c^3*x^2))